Direct effects of calmodulin on NMDA receptor single-channel gating in rat hippocampal granule cells.

نویسندگان

  • Beth K Rycroft
  • Alasdair J Gibb
چکیده

NMDA receptors are glutamate-sensitive ion channel receptors that mediate excitatory synaptic transmission and are widely implicated in synaptic plasticity and integration of synaptic activity in the CNS. This is in part attributable to the high calcium permeability of the ion channel, which allows receptor activation to influence the intracellular calcium concentration and also the slow time course of NMDA receptor-mediated synaptic currents. NMDA receptor activity is also regulated by the intracellular calcium concentration through activation of various calcium-dependent proteins, including calmodulin, calcineurin, protein kinase C, and alpha-actinin-2. Here, we have shown that calmodulin reduces the duration of native NMDA receptor single-channel openings from 3.5 +/- 0.6 msec to 1.71 +/- 0.2 msec in agreement with previous studies on recombinant NMDA receptors (Ehlers et al., 1996). NMDA receptor single-channel amplitudes and shut times were not affected. However, calmodulin reduced the duration of groups of channel openings called superclusters, which determine the slow time course of synaptic currents, from 121 +/- 25.4 msec to 60.4 +/- 11.6 msec. In addition, total open time, number of channel openings, and charge transfer per supercluster were all reduced by calmodulin. A 68% decrease in charge transfer per supercluster suggests that calmodulin activation will significantly reduce calcium influx during synaptic transmission. These results suggest that calmodulin-dependent inhibition of NMDA receptors will reduce the amplitude and time course of excitatory synaptic currents and thus affect synaptic plasticity and integration of synaptic activity in the CNS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Substance P enhances NMDA channel function in hippocampal dentate gyrus granule cells.

Substance P (SP)-containing afferents and the NK-1 tachykinin receptor to which SP binds are present in the dentate gyrus of the rat; however, direct actions of SP on principal cells have not been demonstrated in this brain region. We have examined the effect of SP on N-methyl--aspartate (NMDA) channels from acutely isolated dentate gyrus granule cells of adult rat hippocampus to assess the abi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 20  شماره 

صفحات  -

تاریخ انتشار 2002